Existing testing techniques do not meet the requirements for static-dynamic composite loading tests of anti-impact supports for rockburst protection in mines. In this study, a hydraulic impact test machine was designed to simulate the rockburst conditions. The test machine was designed with the maximum impact load of 6500 kN, starting time (for static-dynamic loading conversion) of less than 50 ms, effective impact displacement of 0.8 m, maximum impact speed of 8 m/s, and a maximum energy accumulation of 8×106 J. Based on the proposed technical specifications, a symmetrical layout of four accumulator groups was opted to meet the impact energy requirements. Secondly, a novel extra-high-flow high-pressure quick-opening valve structure (with rated pressure of 31.5 MPa, an instantaneous flow rate of 120,000 L/min, and starting time <50 ms) was innovatively designed and shown to sufficiently meet the maximum impact speed requirement. Furthermore, an impact cylinder with a blowing device was developed to minimize the liquid return resistance of the hydraulic impact cylinder for achieving the required impact load and speed. An anti-rigid impact protector is also proposed to protect the test machine during high-energy impact tests. The design validation was performed through various tests. The results confirm that the test machine successfully provides a reliable method for laboratory dynamic testing of anti-impact supports. In addition, the data collected during the tests can be used for future development of novel anti-impact hydraulic supports.